1,462 research outputs found

    On the apparent failure of the topological theory of phase transitions

    Full text link
    The topological theory of phase transitions has its strong point in two theorems proving that, for a wide class of physical systems, phase transitions necessarily stem from topological changes of some submanifolds of configuration space. It has been recently argued that the 2D2D lattice ϕ4\phi^4-model provides a counterexample that falsifies this theory. It is here shown that this is not the case: the phase transition of this model stems from an asymptotic (NN\to\infty) change of topology of the energy level sets, in spite of the absence of critical points of the potential in correspondence of the transition energy.Comment: 5 pages, 4 figure

    Numerical solution of three-dimensional rectangular submerged jets with the evidence of the undisturbed region of flow

    Get PDF
    The evolution of turbulent rectangular submerged free jets has been investigated numerically with a two-dimensional (2D) approach by the present authors and, by using the large eddy simulations (LES) at several Reynolds numbers. The average numerical results confirmed the presence of the undisturbed region of flow (URF) located between the slot exit and the beginning of the potential core region (PCR) previously observed experimentally at the University of Rome “Tor Vergata” by Gori and coworkers. The 2D study of the present authors carried out under the conditions previously investigated in the literature, showed that the URF has a self-similar behavior, and proposed a new law for the evolution of the momentum. The present paper extends the LES to three-dimensional (3D) rectangular submerged free jets, in the range from Re =5,000 to Re =40,000, showing that the self-similar behavior of URF is also present in the 3D numerical simulations, as well as in the PCR and in the fully developed region (FDR)

    Collective behavior of oscillating electric dipoles

    Get PDF
    The present work reports about the dynamics of a collection of randomly distributed, and randomly oriented, oscillators in 3D space, coupled by an interaction potential falling as 1/r31/r^3, where r stands for the inter-particle distance. This model schematically represents a collection of identical biomolecules, coherently vibrating at some common frequency, coupled with a 1/r31/r^3 potential stemming from the electrodynamic interaction between oscillating dipoles. The oscillating dipole moment of each molecule being a direct consequence of its coherent (collective) vibration. By changing the average distance among the molecules, neat and substantial changes in the power spectrum of the time variation of a collective observable are found. As the average intermolecular distance can be varied by changing the concentration of the solvated molecules, and as the collective variable investigated is proportional to the projection of the total dipole moment of the model biomolecules on a coordinate plane, we have found a prospective experimental strategy of spectroscopic kind to check whether the mentioned intermolecular electrodynamic interactions can be strong enough to be detectable, and thus to be of possible relevance to biology.Comment: 20 pages, 4 figure

    A 2d-Numerical Study on Slot Jet Applied to a Wind Turbine as a Circulation Control Technique

    Get PDF
    The file attached to this record is the author's final peer reviewed version.A study on the feasibility of the Circulation Control (CC) technique for wind turbines is proposed. The CC was born in aeronautic field to improve the lift force on the wings, allowing the short take-off and landing of aircraft. It consists in blowing air at a relatively high speed over a rounded trailing edge. The thin jet of air remains attached to the convex curved surface, imposing a certain curvature to the outer streamlines, and, hence, increasing the lift force of the airfoil. Aim of this study is to numerically investigate the advantages on a wind turbine, based on the S809 airfoil, taking into account the energy related considerations, as the cost of the jet production. The paper, after a thorough evaluation of the increase of the generated power, finds that this technique could be promising in the energy harvesting aim

    On the origin of Phase Transitions in the absence of Symmetry-Breaking

    Get PDF
    In this paper we investigate the Hamiltonian dynamics of a lattice gauge model in three spatial dimension. Our model Hamiltonian is defined on the basis of a continuum version of a duality transformation of a three dimensional Ising model. The system so obtained undergoes a thermodynamic phase transition in the absence of symmetry-breaking. Besides the well known use of quantities like the Wilson loop we show how else the phase transition in such a kind of models can be detected. It is found that the first order phase transition undergone by this model is characterised according to an Ehrenfest-like classification of phase transitions applied to the configurational entropy. On the basis of the topological theory of phase transitions, it is discussed why the seemingly divergent behaviour of the third derivative of configurational entropy can be considered as the "shadow" of some suitable topological transition of certain submanifolds of configuration space.Comment: 31 pages, 9 figure

    Geometrical aspects in the analysis of microcanonical phase-transitions

    Get PDF
    In the present work, we discuss how the functional form of thermodynamic observables can be deduced from the geometric properties of subsets of phase space. The geometric quantities taken into account are mainly extrinsic curvatures of the energy level sets of the Hamiltonian of a system under investigation. In particular, it turns out that peculiar behaviours of thermodynamic observables at a phase transition point are rooted in more fundamental changes of the geometry of the energy level sets in phase space. More specifically, we discuss how microcanonical and geometrical descriptions of phase-transitions are shaped in the special case of ϕ4\phi^4 models with either nearest-neighbours and mean-field interactions

    The Berezinskii Kosterlitz Thouless phase transition is of second-order in the microcanonical ensemble

    Full text link
    A paradigmatic example of a phase transition taking place in the absence of symmetry-breaking is provided by the Berezinkii-Kosterlitz-Thouless (BKT) transition in the two-dimensional XY model. In the framework of canonical ensemble, this phase transition is defined as an infinite-order one. To the contrary, by tackling the transitional behavior of the two dimensional XY model in the microcanonical ensemble, we show that the BKT phase transition is of second order. This provides a new example of statistical ensemble inequivalence that could apply to a broad class of systems undergoing BKT phase transitions

    Persistent Homology analysis of Phase Transitions

    Get PDF
    Persistent homology analysis, a recently developed computational method in algebraic topology, is applied to the study of the phase transitions undergone by the so-called XY-mean field model and by the phi^4 lattice model, respectively. For both models the relationship between phase transitions and the topological properties of certain submanifolds of configuration space are exactly known. It turns out that these a-priori known facts are clearly retrieved by persistent homology analysis of dynamically sampled submanifolds of configuration space.Comment: 10 pages; 10 figure
    corecore